IBM Z Sort and DFSORT Considerations

Dave Betten
betten@us.ibm.com

John Burg
jpburg@us.ibm.com

Version Date: July 2, 2021

© 2021 IBM Corporation

Objective and Summary

The purpose of this White Paper is to provide guidance on DFSORT’s use of IBM Z Sort
to reduce Sort elapsed time and Sort CPU time. This paper will discuss what is Z Sort,
what DFSORT characteristics does it require, and with the IBM Z Batch Network
Analyzer (zBNA) tool, identify potential candidates eligible to exploit it, and what
settings and resources are required to maximize the Sorts that can utilize Z Sort. The
scope includes virtual storage, DFSORT settings and available processor storage.

DFSORT Background

DFSORT is IBM's high-performance sort, merge, copy, analysis, and reporting product
and 1s an optional feature of z/OS. For many years, DFSORT has employed highly
efficient algorithms to process large volumes of data and continues to be an integral part
of z/OS batch applications. Until now, the majority of DFSORT optimizations have been
related to I/O and memory efficiency. DFSORT is able to exploit I/O technologies such
as compression, data striping and zHPF to accelerate input and output I/O while making
use of memory (Memory Objects, Hiperspaces and Dataspaces) to reduce work data set
I/0. Recent DFSORT enhancements have positioned DFSORT to leverage large memory
configurations while reducing the risk of negative performance impacts to other
applications from over commitment of resources.

What is the IBM Z Sort and What are the DFSORT
Characteristics Required to Exploit it?

The IBM z15 introduced a new on-chip accelerator available via a new SORTL
instruction. DFSORT has been updated with a new sort algorithm designed to exploit
this technology and accelerate the sorting process. The combination of these new
technologies is referred to as IBM Z Sort. To fully benefit from this high-speed sorting
algorithm DFSORT must be able to pass data to the on-chip accelerator at rapid speed.
As a result, the initial exploitation does not include sorts that are utilizing the more
complex functions such as INREC, OUTREC, OUTFIL, SUM, long sort keys, etc.
Additionally, input and output exits commonly used by program invoked sorts are not yet
supported as they cannot pass records to/from DFSORT fast enough to realize the
benefits of the on-chip accelerator. The exception to this is DB2 Utilities where IBM has
optimized the interface used to transfer records between the utility and the sort tasks.
DFSORT’s Z Sort algorithm also relies on in-memory sorting to reduce delays related to
work data set 10 that would offset the on-chip accelerator capabilities.

© 2021 IBM Corporation 1

What resource related inhibitors exist to utilizing the
IBM Z Sort?

As mentioned above, DFSORT’s Z Sort criteria is based mostly on the functions and data
characteristics that are out of the customer’s control unless they can modify their sorts to
fit the criteria. But other environmental factors can further limit the use of IBM Z Sort.
The most significant is the amount of 64-bit memory available for sorting. The new IBM
Z Sort algorithm requires a large portion of the file fit in memory. This is required to
allow the IBM Z Sort algorithm to efficiently leverage the on-chip accelerator without
having to move data between memory and intermediate disk storage. There are several
factors that can limit the memory available to DFSORT.

1. DFSORT options can be tailored to restrict memory. Installation defaults such as
EXPMAX, EXPOLD, EXPRES and MOSIZE should be evaluated to insure they
are allowing DFSORT to fully utilize available memory. While MOSIZE can be
overridden at run time via an OPTION statement, the EXP* parameters cannot.

2. MEMLIMIT can restrict the amount of 64-bit memory a sort can use. Quite often
customers run with rather small default MEMLIMIT values (2GB for example).
Usually, the default is set in the SMFPRMxx member of SYS1.PARMLIB but
some installations also have an IEFUSI exit to set it. For sorts, often it is
recommended to set MEMLIMIT=NOLIMIT to eliminate this restriction and let
DFSORT determine the optimum amount of 64-bit memory to allocate without
impacting overall systems performance.

It also is recommend the DFSORT defaults be set as follows EXPMAX=MAX,
EXPRES=10% However, it is recommended EXPOLD be set to zero percent
(EXPOLD=0%), as this will prevent DFSORT from using any “old” pages. Since
processor storage is typically plentiful in most environments, there is no need to
potentially take pages that may be utilized in later time periods by different workloads.
To summarize, for DFSORT the recommendations are:

EXPMAX=MAX
EXPRES=10%
EXPOLD=0%
MOSIZE=MAX
MEMLIMIT=NOLIMIT

This will allow DFSORT to utilize available resources to maximize Memory Objects and
thus IBM Z Sort exploitation.

© 2021 IBM Corporation 2

zBNA and how can it identify IBM Z Sort Candidates

zBNA V2.2.4 is an ‘as is’, no cost tool available to customers. It now includes a new
application, the DFSORT Z Sort Application which can identify DFSORT Z Sort
candidates and estimated benefits.

Here is the link to obtain zZBNA tool.
https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS5132

There are ZBNA Education materials on the download site, and one of them “Putting the
New Z Sort Named Favorite into Practice Webinar” https://ibm.ent.box.com/v/zZBNA-Z-
Sort-Webinar is highly recommended on understanding how to use the zZBNA tool.

The zBNA Z Sort application uses SMF 16 (DFSORT) records as input and identifies the
sorts with characteristics needed to exploit IBM Z Sort. zZBNA also estimates the benefits
of exploiting IBM Z sort and provides a series of reports and charts with the findings.
DFSORT today will only use IBM Z Sort if the entire file fits in a Memory Object or at
least 75% of the file size fits in a Memory Object. So, if a file was too big to fit into a
Memory Object, it would use a different DFSORT path and likely use SortWork. In that
situation, zZBNA would not report it as a candidate.

It is common for customers to configure their systems to limit the size of Memory

Objects. They may have resource limitations, or perhaps settings are left over from
historic events or just carried forward.

ZzBNA - Cutting Edge Analytics to Determine Value

ZBNA Uniquely Identifies the Z Sort Candidates and Estimates the Benefits

& Y (A &

Processes the customers SMF Cetarmines if sach Sort iz a Calculates Banafits for Provides 215 Z Sorl estimated
16 OFSORT and SMF 30 Z Sorl Candidate based on Candidates using Bytes Elapsed Times ngrovements
Records CFSORT requiremants Soried Scaling Metrics and CPU esfimated Seconds
1 SMF 18 record for avery Fitars out thosa with Usas granularity of Riecard Reduciions
Sort, Merge of Copy Restrictions and provides Length and Reconds Converts CPU seconds to
; an Insligitls Report for Processed to spacify the astimate MIFS saved
ISMFE,SEE[E; g':fFEELDHT:I those not selected Sealing Metrics

iy T
"
E [||2|II|I||| fixgas
zAH Y

¥ Coppright B Coporion 2000

© 2021 IBM Corporation 3

https://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS5132
https://ibm.ent.box.com/v/zBNA-Z-Sort-Webinar
https://ibm.ent.box.com/v/zBNA-Z-Sort-Webinar

The zZBNA IBM Z Sort application also provides insights into sorts that cannot currently
exploit IBM Z Sort. The purpose of this White Paper is to provided information to help
assess if resources or settings may be limiting the usage of IBM Z Sort exploitation.

zBNA functionality can show potential IBM Z Sort candidates if the sort’s current use of
SortWorks is changed. This is identified in zZBNA as “Z Sort SWK Potential” and shown
in the charts below in red. ZBNA originally showed only the fully eligible IBM Z Sort
candidates (shown below in Blue).

DFSORT Z Sort Analysis — Total Sorts and Total Gigabytes

« Total Sorts N - Total Gigabytes
Total Sorts SORT1002 Total GB Sorted SORT1003

llll
0Sep-144 B 12 16 2Bep-154
ot =5 758 MO wi SWE 2 Sort SWK P

The key point of this White Paper is to focus on the sorts in red, because they offer the
largest potential for improvement. These sorts have met the IBM Z Sort requirements
except they don’t have the required Processor Storage or Virtual Storage required to
utilize IBM Z Sort. There are typically fewer of these “SortWork™ sorts, but they tend to
sort larger files (Bytes Sorted), and thus have longer elapsed times and more CPU.

zBNA chart SORT1008 provides a report to showing the Top 15 IBM Z Sort SWK
candidates. You can use this information to drive your analysis of which ones you’d
want to improve (e.g. longest running, most important to the Batch Window or critical
path). Then it’s possible to investigate the sort metrics to see why they aren’t using
Memory Objects today. Possible inhibitors include:

MEMLIMIT is too small compared to their GB Sorted

Insufficient Processor Storage available

DFSORT settings (EXPxx or MOSIZE) are preventing use of a Memory Object
Running on a IBM z15 with IBM Z Sort is disabled

© 2021 IBM Corporation 4

The zBNA chart SORT1003 update has a significant impact as it shows the total bytes
sorted (GB) for all the IBM Z Sort candidates, including the SortWork ones. zZBNA adds
up the GB sorted for any IBM Z Sort candidate sort ended in the hour. It assumes all the
sorts ran at the same time in the hour they ended and thus all had their processor storage
requirement at the same time (this is a very conservative assumption, and probably
unlikely). One could use zZBNA chart SORT1003 as a “ballpark™ crude estimate of how
much additional processor storage is required by DFSORT

DFSORT recommends planning for ~2x the Bytes Sorted to estimate the Memory Object
size. So, for a crude estimation, using 2x the size of the peak GB Storage would be the
system requirement in Processor Storage to support all the eligible sorts. In the example
above it appears the peak is 1.5 TB (1,500 GB at 4 AM on Sept 15) of processor storage,
and if you 2x that amount it would be over 3 TB. Processors today can support a very
large amount of storage. The z15 TO1 can support 40 TB of processor storage and the z15
T02 can support 16 TB of processor storage. The maximum a z/OS LPAR can support
(z/OS V2R4) is 4 TB. This seems like an extraordinary amount of processor storage to
configure (and it probably is), but they key point is to understand just how big your
eligible IBM Z Sort candidate Bytes Sorted are, and consider adding or reconfiguring
processor storage to the LPARs with the sort workloads which could utilize IBM Z Sort.

In the example above we would suggest a “bottoms up” approach by looking at the sorts
in zZBNA chart SORT1008 to see which ones you want to improve. Then look when they
run and if they are concurrent. Then review how big the sorts are and ensure you have ~
2x their GB storage available processor storage in the timeframe they run.

That is probably a reasonable approach to get started. Then you can individually enable
IBM Z Sort for the specific sorts (via the SYSIN or DFSPARM DD statements. To
enable you can specify OPTION ZSORT in the SORT control statement). You can
validate the results and continue to implement Z Sort for other sorts where you want to
improve elapsed time and reduce CPU time. The key point is to think big on processor
storage as DFSORT Z Sort can exploit it to improve both elapsed time and reduce CPU.

zBNA V2.2.4 became available in late May 2021 and further added capability to identify
“constrained” IBM Z Sort candidates. ZBNA V2.2.4 added the new capability to identity
sorts which could be IBM Z Sort candidates but are currently using SORTWK, not
memory objects. ZBNA provides 2 new reports: SORT1007 and SORT1008

© 2021 IBM Corporation 5

™ Graph Selection — |
Graph ID in MNF Graph Mame
SORT000 v Top 15 £ Sort Report
SORT1001 o Top 15 Z Sort Gantt Chart
SORTI002 v Total Sorts Analysis
SORT003 v Total Gigabytes Sorted Analysis
SORT1004 v Estimated z15 Elapsed Time Savings
SORT1005 v Estimated £ Sort MIPS Savings
SORT006 Estimated £ Sort MSU Savings
SORT1007 Top 15 Memory Object == 75% Report
SORT1008 Top 15 Potential £ Sornt Report wi Add. Proc. Storage
Search for:
Manage Favorites Show Selected

SORT1007 shows those Sorts that are IBM Z Sort candidates with more than 75% of the
file size fitting in a memory object. The benchmark metrics are not available to estimate
the benefits of converting these sorts to IBM Z Sort. So, like the candidates with 100% in
Memory Objects today (Top 15 IBM Z Sort report) these are also candidates, but ZBNA
cannot provide estimates of benefits. You could use this report to identify how much

more Memory Object size is required to fit 100% within a Memory Object.

If the objective is to try and identify additional IBM Z Sort candidates IF additional
resources were made available, then SORT1008 should be analyzed. This shows the IBM
Z Sort candidates (all DFSORT selection criteria met) except they did not utilize a
Memory Object (100% SortWork), or they did not fit 75% into a Memory Object. In both
cases they did not meet the IBM Z Sort for that one criteria. So, IF the environment could

be altered to use a Memory Object then they would use Z Sort.

© 2021 IBM Corporation

The information in SORT1008 can be useful in the analysis. It is sorted in GB Sorted
descending. This often results in the largest sorts with the longest elapsed time and most
CPU time. If one is looking to maximize the benefit from IBM Z Sort, this is your top
candidate list. There is also useful information, like Memory Object Used (GB) and
Memory Limit (GB). The Memory Object Used is probably small (relative to the GB
Sorted) or 0 since these are the Top SWK IBM Z Sort eligible sorts. The Memory Limit
is the virtual storage above the bar limit for the sort. Comparing this value to the GB
Sorted can be useful in determining why a Memory Object was not used. If the Memory
Limit is, for example, 2 GB, and the GB Sorted significantly higher, then the Memory
Limit may be the reason it did not use a Memory Object. In addition, there would have to
be processor storage available, and DFSORT settings configured to exploit the processor
storage and IBM Z Sort.

It is also important for DFSORT to use as much processor storage as possible, and it is
controlled by the EXP* parm values and of course available processor storage which can
be utilized by Memory Objects. DFSORT can control access by DAY/ TOD to its parms
including EXP*, so it is possible to create custom settings to allow access to more
processor storage in the Batch window. See our recommendations above.

In summary, you need three requirements to exploit DFSORT Z Sort:

1. The Job/Step needs access to the virtual storage above the bar (this is controlled
by the MEMLIMIT setting)

2. DFSORT needs to be able to exploit processor storage and Memory Objects (EXP
values and MOSIZE settings)

3. Have processor storage available to be exploited. (RMF — Paging Report will
show Min and Max available processor storage and the pageable 1 MB frames
DFSORT uses for Z Sort Memory Objects).

© 2021 IBM Corporation 7

WSC DFSORT IBM Z Sort Test Jobs

Sort test jobs were run on an IBM z15 processor. The tests jobs ran the same 44GB sort
multiple times alongside varied workloads that impacted the amount of available memory
on the system. For the tests, the DFSORT defaults were set to optimally exploit available
memory:

o EXPMAX=MAX, EXPOLD=0, EXPRES=10%
¢ MOSIZE=MAX, HIPRMAX=OPTIMAL, DSPSIZE=MAX

This system had a default MEMLIMIT of 20GB so in some cases the jobs were limited. I
In other jobs, we added REGION=0M to the JCL which causes MEMLIMIT=NOLIMIT
to be in effect. Also set was the default of ZSORT=YES except for the last test case
with ZSORT=NO to demonstrate a case where a sort completed entirely in memory but
was still unable to exploit IBM Z Sort. ZEDC compression was used for all SORTIN and
SORTOUT files.

Using RMF, we were able to show the maximum available memory during the interval in
which each job executed. RMF was set to report on 5-minute intervals and we only ran a
single test case in each interval. In the results below, you'll notice when the available
memory was more than the 20 GB MEMLIMIT, DFSORT chose Hiperspace since it
could use more memory via that method (up to the DFSORT limitation of 32 GB).

RMF Elapsed CPU
lob Max GB 50rt Memory Elapsed Time CPUTime Improvement Improvement
Id End JobName Number Avail ~ MEMUMIT Enabled ZSortUsed Used(GB) MemoryType Worklf0 (Sec) (Sec) % %
1 14:06:57 CUSTOSWK JOB25358 163 NOLIMIT Y N 0.00 none 181,100 1 32.96 0.0% 0.0%
2 141419 CUSTOSMW JOB25360 24.69 NOLIMIT ¥ N 21,34 MOWRK 109,393 21 B30 Tk -32.0%
3 142106 CUSTOSMW JOB25361 24.68 20GB ¥ N 21.23 Hiperspace 21,982 M RH -2.3% -60.5%
4 14:29:23 CUSTOSIW JOB25364 ~ 40.60 20GB ¥ N 32.00 Hiperspace 125,3% 158 61.86 1.3% -B7.7%
5 14:33:48 CUSTOSZW JOB25366 | 40.56 NOLIMIT Y Y 3572 ZSrtMO/Swk 58,554 20 M7 35.5% -35.9%
b 144417 CUSTOSZS JOB25367 | 6118 20GB Y N 32.00 Hiperspace 125,355 51 6.7 264% -B7.4%
7 144543 CUSTOSZS JOB25368 ~ 6L.6S NOLIMIT Y Y 4545 7Sort MO 64 3 3232 88.6% 15%
8 14:5L:30 CUSTOSZS JOB25370 | 6LI9 NOLIMIT N N 47.08 MO 64 80 51L& 76.5% -57.4%

IBM Z Sort was only used in the cases where available memory was large enough,
MEMLIMIT did not restrict the use of 64-bit memory and IBM Z Sort was enabled. In
most cases the use of Hiperspace or memory objects, resulted in reduced elapsed time
compared to the first test case that used only disk work files. However, this change
resulted in an increase in CPU cost. Only in the IBM Z Sort in memory case (Id 7) did
both a reduction in elapsed time and a CPU savings occur.

For the first 2 jobs (), there was not enough processor storage available to
DFSORT (by design, as other jobs consumed processor storage). had the least
amount of processor storage available, and it used no memory option, and used a
traditional Sort Work sort. With , more processor storage (about 25 GB) was
available, a Memory Object with SortWork was utilized. IBM Z Sort was not used

© 2021 IBM Corporation 8

because only 21.34 GB / 44 GB = 49% of the file size would fit in the Memory Object.
IBM Z Sort requires =>75% to fit in a Memory Object.

The next jobs () had the MEMLIMT constrained to 20 GB, DFSORT utilized
Hiperspace, since it could utilize up to 32 GB with that option, as discussed above. With
more processor storage (about 40 GB) available to , it used up to the 32 GB for
Hiperspace, reduced SortWork I/Os and ran faster than

For job , with still about 40 GB processor storage available, when the MEMLIMT
constraint was removed, DFSORT selected the IBM Z Sort Memory Object / SortWork
path. In this case 35.72 GB / 44 GB = 81% of the file size fit into a Memory Object. The
elapsed time and CPU time both decreased relative to the Hiperspace job (Id 4).

The available processor storage continued to increase to about 61 GB when Job ran.
However, the MEMLIMIT was set back to 20 GB. So DFSORT used Hiperspace (32
GB). Notice it achieved essentially the same results as job in elapsed and CPU time.
The MEMLIMIT setting constrained DFSORT, even though more processor storage was
available.

Job was finally able to execute with about 61 GB processor storage, unconstrained
MEMLIMIT, IBM Z Sort enabled, and the entire file size (44 GB) fit in a Memory
Object, so DFSORT executed with a IBM Z Sort Memory Object. Notice it had the
lowest elapsed time and lowest CPU time of any of the runs.

Job was essentially the same environment as Job , except that IBM Z Sort was
disabled by the JCL SYSIN Sort Control Option NOZSORT. While job completed
entirely in a Memory Object it did not use Z Sort, and it resulted in higher elapsed time
and higher CPU time. Job will later show up as a zZBNA candidate (SORT1001) as it
resides entirely in a Memory Object.

© 2021 IBM Corporation 9

zBNA Results for WSC DFSORT IBM Z Sort Test Jobs

Once the tests were completed, we analyzed the jobs using zZBNA V2.2.4

zBNA Chart SORT1001

In this limited scope of § jobs, only 1 job (ID 8) fits entirely in a Memory Object. It was
the last job in our test. ZBNA provides estimates of potential elapsed and CPU savings.
The actual elapsed time savings was less than predicted but the CPU savings was very
close (to job ID 7). Overall job Id 7 (IBM Z Sort enabled) still had an actual 51.3%
savings in job elapsed time and 37.7% savings in job CPU time. This underscores the
importance of having all resources and settings to allow DFSORT to maximize IBM Z

Sort benefits.
P " ou | u Renl Est. Z Sorton 213
ld | s Step | GBSorted | Elapsed Ti W | Jocation | omoryObj) Alemory o i
ohame | Slep more PEEN seconds | ™ | Used(GB) | Limit(GB) | Format | AFlapsed Time | “CTT L€
Seconds
8 CUSTO3ZS Fl 44340 1935 148 Mem Oy 47,083 No Limit FL 145 -19.85
Tatal 44340 1855 i148 T4 (T22%) | -19.85(-38.6%)
SORT1001
Top 1 Z Sort Eligible Sorts - SYSD
The top 1 Sort Job Steps by GB sorted, according to the user applied filters, are listed in the following table.
i Wi N o | Becond Est. Z Sort on z13
- . ime . Memory Obj | Memory o —
JobName | Step | GBSorted | Elapsed Time Seconds Location Used (GB) Limit GB) | Format | Elapsed Tme A (S:PL '[;_m,
econas
8 CUST03ZS Fl 44340 1935 3148 Mem Obj 47083 No Limit L -514s -19.83
Total 44340 1938 pEH ST4s(722%) || -19.83(-38.6%)

© 2021 IBM Corporation

10

IBM Z Sort Ineligible Jobs — Including those already using Z Sort

On the main panel under the filters there is a button to “Show Ineligible job steps” sorts.

These include the exceptions to all the DFSORT requirements, so you can see the
reasons. In the case of our tests, the only reason was if a sort was already using Z Sort.
zBNA does not double count those sorts. Below are the 2 jobs that used Z Sort, Id 7

(CUSTO5ZS) and Id 5 (CUSTO5ZW).

Z Sort Filters

FJob Mame Include Mask —

CUST*

+

Show ineligible job steps

=M zBMA: Z Sort Ineligible Table — O >
File

Job Name | Step Name | Rec Format | Ineligible Reasons
CLUSTORZS |F1 FL Already using £ Sort
CUSTO5ZW |F1 FL Already using £ Sort

© 2021 IBM Corporation

11

zBNA Chart SORT1008

Top 5 Potential Z Sort Eligible Sorts SWK w/ Add. Memory - SYSD

The Top 15 Potential Sort Job Steps w/ SWK by GB sorted, according to the user applied filters, are listed in the following table.

Job Name Step GB Sorted Elapsed Time C;Eﬂ::e Location \{fil:?cg;’j L:r:flrtn(‘]Gr‘B) ?:g;r; ID
CUSTOSMW Fl 44340 21325 401 Mem Oby SWK 21337 No Limit L 2
CUSTOSMW Fl 44340 348.33 5232 Hiperspace SWK 0.000 20 L 3
CUSTOSZW Fl 44340 25738 6137 Hiperspace SWK 0.000 20 L 4
CUST05ZS Fl 44340 250.08 6127 Hiperspace SWK 0.000 20 L 6
CUSTOSWK Fi 44340 34118 3239 SWK 0.000 No Limit L 1

Total 221,701 238m 25036

Here are the remaining 5 of the 8 test jobs. One is a candidate, and 2 are already using
IBM Z Sort. The zBNA chart SORT1008 represents the most opportunity for identifying
the IBM Z Sort benefit.

First identify the Job / sort you want to improve. Then look for the potential inhibitors. In
the above, Ids 3, 4 and 6 were limited by MEMLIMIT. Ids 2 and 1 were limited by the
lack of available processor storage. Id 2 had more processor storage and already was
using a part of a Memory Object (51%), but not enough to get to 75% of the file size with
a Memory Object for Z Sort.

Analyze RMF reports to understand how much available processor storage is available. If
more is required, can it be obtained from other LPARSs or should it be acquired.

Finally, remember to review the DFSORT Installation options to ensure you can utilize
all the processor storage.

© 2021 IBM Corporation 12

ZzBNA SORT1008 — Additional Depth

zBNA chart SORT1008 only produces the Top 15 Sorts with SortWork. If you want a
deeper list, you can go back to the ZBNA Z Sort main panel and select only “Show
SWK” on the Location filter. This will then display only that subset. From there you can
save the output as a CSV. In the tests there was only one candidate, Id 1.

- Location
[] Show Mem Obj Show SWK
[] Show Hiperspace
[] Show Dataspace
[] Show Mem Obj SWEK
[] Show Hiperspace SWK
= 7 Sort
File | Edit Filters Action Help
Save zBNA Study ctrl-5 Z Sort Filters

Save CSV N r Record Format rJob Name Include Mask— rJob Name Exclude Mask — rExcluded Steps by Job N
a3
Close Cirl-C CUST*
= , Show SWK
["] Show Hiperspace
Show Fixed-length (FL)
["] Show Dataspace
Show Variable-blocked spanned (VBS)
[] Show Mem Obj SWK
["] Show Hiperspace SWK
711 711
« i
e L L L L s e el
Z Sort Table
Job Step — GB Average Num Elapsed | GCP - Memory Obj | Memory | Record | Work Est.Z SORT on 215
Name Name L Sorted | Rec Length Recs Time Time Used (GB) Limit (GB) | Format o A Elapsed Time | A CPU Time
CUSTOSWK. [F1 SORT 44340 2645 18,000,000 341.1s 324z 0.000] Mo Limit FL 181,100 n/a nia
© 2021 IBM Corporation 13

Metrics to Identify IBM Z Sort Candidates and Resources

This section will describe several sources useful in identifying RMF Processor Storage
and DFSORT Installation Options.

RMF Post Processor — Paging Report

The RMF paging report can be used to analyze the available memory on your system as
well as the use of fixed and pageable large pages. The following JCL can be used to
process SMF type 71 records with the RMF post processor to create the report.

//RMFPP EXEC PGM=ERBRMFPP, REGION=0M
//MFPINPUT DD DISP=(SHR), DSN=your.input.smf.dsn
/ /MFPMSGDS DD SYSOUT=*
//SYSIN DD *

SYSOUT (0)

DINTV (0005)

REPORTS (PAGING)
/*

Paging Report

In the sample paging report below the maximum available frames was 6,544,599. There
are 262,144 4K frames per 1 GB of memory. So dividing 6,544,599 by 262,144 we
calculate 24.96 GB was the maximum available memory. When our test sort ran (Id 2), it
used almost all of that memory which is why the minimum available frames during the
interval was only 920,249 frames / 261,444 = 3.5 GB.

© 2021 IBM Corporation 14

PAGING ACTIVITY

PAGE 2
2/0S V2R4 SYSTEM 1D SYSD START 06/23/2021-14.10.60 INTERVAL 060.05.60
RPT VERSTON V2R4 RMF END ©6/23/2021-14.15.00 CYCLE 1.008 SECONDS
OPT = IEAOPTE® CENTRAL STORAGE MOVEMENT AND REQUEST RATES - IN PAGES PER SECOND
SYSTEM UIC: MIN = 65535 MAX = 65535 AVG = 65535
CENTRAL STORAGE ~ PAGE WRITE PAGE READ -------- FRAME COUNTS ---------
---------------- -~ RATE -- -- RATE -- -- MIN -- -- MAX -- -- AVG --
HIPERSPACE 0.00 0.00 1 1 1
VIO 0.60 0.00 1 1 1
------- GETMAIN ------- =-------- FIXED -------- --- REF FAULTS ---
STORAGE REQUESTS REQUESTS FRAMES BACKED REQ < 2GB FRAMES < 2GB 1ST NON-1ST
RATE 754.60 48.58 3.17 47,577.7 18,932.3 0.00
FRAME AND SLOT COUNTS
(31 SAMPLES)
CENTRAL STORAGE FRAMES TOTAL AVAILABLE SQA LPA CSA LSQA REGIONS+SWA HV SHARED HV COMMON
MIN 60817408 920,249 9,513 6,416 8,693 56,169 54110957 4,285 70,228
MAX 60817408 6,544,599 9,521 6,416 8,716 56,299 59735181 4,285 70,228
AVG 60817408 3,249,013 9,516 6,416 8,703 56,259 57406452 4,285 70,228
FIXED FRAMES TOTAL NUCLEUS SQA LPA CSA LSQA REGIONS+SWA <16 MB 16MB-2GB
MIN 308,422 3,623 8,732 120 56,457 12,523 226,950 60 16,615
MAX 331,545 3,623 8,740 121 56,457 12,624 249,992 60 16,736
AVG 324,987 3,623 8,734 120 56,457 12,599 243,452 60 16,665
SHARED FRAMES / SLOTS TOTAL CENTRAL STORAGE FIXED TOT FIXED BEL HV 1M HV 4K AUX DASD AUX SCM
MIN 268573714 11,726 11 1 0 6,840 0 0
MAX 268573714 11,726 11 1 0 6,840 0 0
AVG 268573714 11,726 11 1 0 6,840 0 0
LOCAL PAGE DATA SET SLOTS TOTAL AVATLABLE BAD NON-VIO VIO
MIN 179,999 179,995 0 0 4
MAX 179,999 179,995 0 0 4
AVG 179,999 179,995 0 0 4
SCM PAGING BLOCKS TOTAL AVATLABLE BAD IN-USE
MIN 67108864 67045853 @ 63,011
MAX 67108864 67045853 @ 63,011
AVG 67108864 67045853 e 63,011

© 2021 IBM Corporation 15

During the interval when IBM Z Sort was used to complete the sort entirely in memory

(Id 7), the paging report shows a much larger amount of memory with a maximum
available frames of 16,111,638 / 262,144 = 61.5 GB. DFSORT allocated a large memory
object to complete the IBM Z Sort entirely in memory which is why the minimum
available frames was 7,748,410/ 262,144 = 29.5GB.

PAGING ACTIVITY

2

PAGE
2/0S V2R4 SYSTEM ID SYSD START 06/23/2021-14.45.00 INTERVAL ©00.05.00
RPT VERSION V2R4 RMF END ©6/23/2021-14.50.00 CYCLE 1.800 SECONDS
OPT = IEAOPTE® CENTRAL STORAGE MOVEMENT AND REQUEST RATES - IN PAGES PER SECOND
SYSTEM UIC: MIN = 65535 MAX = 65535 AVG = 65535
CENTRAL STORAGE ~ PAGE WRITE PAGE READ -------- FRAME COUNTS ---------
---------------- -~ RATE -- -- RATE -- == MIN -- -- MAX -- -- AVG --
HIPERSPACE 0.00 0.00 1 1 1
vIo 0.00 0.00 1 1 1
------- GETMAIN ------- =------- FIXED -------- =--- REF FAULTS ---
STORAGE REQUESTS REQUESTS FRAMES BACKED REQ < 2GB FRAMES < 2GB 1ST NON-1ST
RATE 760.30 49.09 3.30 273.93 248.37 0.00
FRAME AND SLOT COUNTS
(31 SAMPLES)
CENTRAL STORAGE FRAMES TOTAL | AVAILABLE SQA LPA CSA LSQA REGIONS+SWA HV SHARED HV COMMON
MIN 60817408 | 7,748,410 9,479 6,416 8,697 56,172 44543942 4,285 70,229
MAX 60817408 | 16111638 9,495 6,416 8,710 56,237 52907116 4,285 70,229
AVG 60817408 | 15365000 9,488 6,416 8,703 56,192 45290560 4,285 70,229
FIXED FRAMES TOTAL b SQA LPA CSA LSQA REGIONS+SHWA <16 MB 16MB-2GB
MIN 257,108 3,623 8,698 120 56,457 12,534 175, 665 60 14,788
MAX 257,819 3,623 8,714 120 56,457 12,552 176,369 60 14,941
AVG 257,245 3,623 8,706 120 56,457 12,538 175,800 60 14,851
SHARED FRAMES / SLOTS TOTAL CENTRAL STORAGE FIXED TOT FIXED BEL HY 1M HV 4K AUX DASD AUX SCM
MIN 268573714 11,726 11 1 0 6,840 0 0
MAX 268573714 11,726 11 1 0 6,840 0 0
AVG 268573714 11,726 11 1 0 6,840 0 0
LOCAL PAGE DATA SET SLOTS TOTAL AVAILABLE BAD NON-VIO VIO
MIN 179,999 179,995 0 0 4
MAX 179,999 179,995 0 0 4
AVG 179,999 179,995 0 0 4
SCM PAGING BLOCKS TOTAL AVAILABLE BAD IN-USE
MIN 67108864 67086772 0 22,092
MAX 67108864 67086772 0 22,092
AVG 67108864 67086772 0 22,092
© 2021 IBM Corporation 16

On page 3 of this same RMF paging report we can see the use of pageable 1 MB frames
by DFSORT when using IBM Z Sort (46,795 1 MB frames). Since we’re now dealing
with 1IMB frames we merely divide by 1,024 to convert that to 45.7 GB.

2/0S V2R4 SYSTEM ID SYSD START ©6/23/2021-14.45.00 INTERVAL 000.05.00
RPT VERSION V2R4 RMF END 06/23/2021-14.50.60 CYCLE 1.000 SECONDS
OPT = TEAOPTEO MEMORY OBJECTS AND HIGH VIRTUAL STORAGE FRAMES
LFAREA MAXIMUM
1 MB FRAMES 266
2 GB FRAMES 246
MEMORY OBJECTS FIXED 1M FIXED 26 COMMON SHARED SHARED 1M
MIN 6 0 139 17 0
MAX 6 0 139 17 0
AVG 6 0 139 17 ol
1 MB FRAMES ~ ---e---eeo-- FIXED =----==---n- AGEABLE AVAILABLE TOTAL
------------------ MAXIMUM AVAILABLE ~ IN-USE f-----=-- =e--eeeoe ccoeeeoo-
MIN 25,804 18,752 14 272 18,752 231,251
MAX 25,804 25,790 14 | 46,795 51,662 231,251
AVG 25,804 25,336 14 4,521 48,624 231,251
2 GB FRAMES ~ -=----ee--- FIXED =----n=---=-
------------------ MAXIMUM AVAILABLE IN-USE
MIN 12 12 0
MAX 12 12 0
AVG 12 12 0
HIGH SHARED FRAMES TOTAL CENTRAL STORAGE BACKED 1M AUX DASD AUX SCM
MIN 136902. 1M 4,285 0 0 49
MAX 136902. 1M 4,285 0 0 49
AVG 136902. 1M 4,285 0 0 40
HIGH COMMON FRAMES TOTAL CENTRAL STORAGE BACKED 1M FIXED FIXED 1M AUX DASD AUX SCM
MIN 17301504 70,229 188 9,150 14 0 11
MAX 17301504 70,229 188 9,150 14 0 11
AVG 17301504 70,229 188 9,150 14 0 11

© 2021 IBM Corporation 17

RMF Overview Reports — Available and Used

RMF overview reports can be useful to show available and used memory over time. This
sample JCL shows the online, maximum available and minimum available frame counts
along with maximum Hiperspace usage and average pageable 1 MB frames usage.

//RMFPP EXEC PGM=ERBRMFPP,REGION=0M
//MFPINPUT DD DISP=(SHR),DSN=your.input.smf.dsn
//MFPMSGDS DD SYSOUT=*

//[SYSIN DD *

SYSOUT(O)

OVW(ONLINE(STORAGE))
OVW(MAXAVAIL(CSTORAVX))
OVW(MINAVAIL(CSTORAVM))
OVW(MAXHIP(RSHSPX))
OVW(PGBL1M(LPFRPX))

/*

This creates an overview report showing the values for each RMF interval.

RMF OVERVIEW REPORT

PAGE 001
z/0S V2R4 SYSTEM ID SYSD START 06/23/2021-14.00.00 INTERVAL 00.05.00
RPT VERSION V2R4 RMF END 06/23/2021-14.55.00 CYCLE 1.000 SECONDS
NUMBER OF INTERVALS 11 TOTAL LENGTH OF INTERVALS 00.55.00
DATE TIME INT ONLINE MAXAVAIL MINAVAIL MAXHIP PGBLIM
MM/DD HH.MM.SS HH.MM.SS
06/23 14.00.00 00.04.59 60817408 426578 404302 1 272
06/23 14.05.00 00.04.59 60817408 6472721 404276 1 272
06/23 14.10.00 00.05.00 60817408 6472715 848361 1 272
06/23 14.15.00 00.04.59 60817408 6470525 887516 1265137 272
06/23 14.20.00 00.05.00 60817408 59063744 4772788 1638425 272
06/23 14.25.00 00.04.59 60817408 10644055 2218460 272
06/23 14.30.00 00.05.00 60817408 10633622 1281140 1 25169
06/23 14.35.00 00.04.59 60817408 16039219 7092173 1 272
06/23 14.40.00 00.05.00 60817408 16039219 7622537 272
06/23 14.45.00 00.05.00 60817408 16039758 7676526 1 4521

06/23 14.50.00 00.04.59 60817408 16039758 40883670

[ERN

272

© 2021 IBM Corporation 18

DFSORT Installation Options

In DFSORT it may be useful to see what installation options are currently in effect. One
can run the ICETOOL with the following options:

//LISTDEF EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=x*
//DFSMSG DD SYSOUT=%*
//SHOWDEF DD SYSOUT=*
//TOOLIN DD *

DEFAULTS LIST (SHOWDEF)
/*

On the next page is a sample of the output which is written to the SHOWDEF DD. In this
case we have the recommended settings as discussed above. Note that the DFSORT
default is listed below with an *, so you can see we’ve set EXPOLD to 0%, from the 50%
default, and you can see we’ve set ZSORT to be enabled “YES” vs it being disabled
“NO”. This can be very useful to understand what options are in effect in your
environment.

© 2021 IBM Corporation 19

1Z/0S DFSORT V2R4

MERGED PARMLIB/ICEMAC DEFAULTS = 4 =

* IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE SPECIFIED DEFAULT)

ENABLE

ABCODE
ALTSEQ
ARESALL
ARESINV
CFW
CHALT
CHECK
CINV
COBEXIT
COLLKEY
DIAGSIM
DSA
DSPSIZE
DYNALOC
DYNAPCT
DYNAUTO
DYNSPC
EFS
EQUALS
ERET
ESTAE
EXITCK
EXPMAX
EXPOLD

EXPRES
FSZEST
GENER
GNPAD
GNTRUNC
HIPRMAX
IDRCPCT
IEXIT
IGNCKPT
IOMAXBF
LIST
LISTX
LOCALE
MAXLIM
MINLIM
MOSIZE
MOWRK
MSGCON
MSGDDN
MSGPRT
NOMSGDD
NULLOFL
NULLOUT
ODMAXBF
OUTREL
OUTSEC
OVERRGN
OVFLO
PAD
PARMDDN
RESALL
RESET
RESINV
SDB
SDBMSG
SIZE
SMF

SOLRF
SORTLIB
SPANINC
svc
SZERO
TEXIT
TMAXLIM
TRUNC
TUNE
VERIFY
VIO
VLLONG
VLSCMP
VLSHRT
VSAMBSP
VSAMEMT
VSAMIO
WRKREL
WRKSEC
Y2PAST
ZDPRINT
ZSORT

JCL (ICEAM1) VALUE

SEE BELOW

NOT APPLICABLE
YES

NO

YES

YES
coB2
UCA600
NO

128

MAX
(SYSDA, 4)
10

YES

256
NONE
VLBLKSET
RC16
YES
STRONG
MAX

(0]

* 50%
10%

NO

NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
OPTIMAL
NONE

NO

YES
35651584
YES

YES
NONE
1048576
450560
MAX

YES
NONE
SYSOUT
ALL
QUIT
RCO

RCO
2097152
YES

YES
65536
RCO

RCO
DFSPARM
4096
YES

NOT APPLICABLE
INPUT
NO

MAX
FULL

* NO
YES
PRIVATE
RC16
109

YES

NO
6291456
RCO
STOR

NO

NO

NO

NO

NO
OPTIMAL
YES

NO

YES

YES

80

YES

YES

* NO

INV (ICEAM2) VALUE

MSG

SEE BELOW
(0]

(0]

YES

NO

YES

YES
coB2
UCA600
NO

128

MAX
(SYSDA, 4)
10

YES

256
NONE
VLBLKSET
RC16
YES
STRONG
MAX

(0]

* 509%
10%

NO
IEBGENR
RCO

RCO
OPTIMAL
NONE

NO

YES
35651584
YES

YES
NONE
1048576
450560
MAX

YES
NONE
SYSOUT
ALL
QUIT
RCO

RCO
2097152
YES

YES
16384
RCO

RCO
DFSPARM
4096
YES

(0]

INPUT
NO

MAX

NO

YES
PRIVATE
RC16
109

YES

NO
6291456
RCO
STOR

NO

NO

NO

NO

NO
OPTIMAL
YES

NO

YES

YES

80

YES

NO

© 2021 IBM Corporation

TSO (ICEAM3) VALUE

SEE BELOW

NOT APPLICABLE
YES

NO

YES

YES

coB2
UCA6060

NO

128

MAX
(SYSDA, 4)
10

YES

256

NONE
VLBLKSET
RC16

YES
STRONG
MAX

(0]

* 509%
10%

NO

NOT APPLICABLE
NOT APPLICABLE
NOT APPLICABLE
OPTIMAL
NONE

NO

YES
35651584
YES

YES

NONE
1048576
450560
MAX

YES

NONE
SYSOUT
ALL

QUIT

RCO

RCO
2097152
YES

YES
65536
RCO

RCO
DFSPARM
4096

YES

NOT APPLICABLE
INPUT

NO

MAX

NO

YES
PRIVATE
RC16
109

YES

NO
6291456
RCO
STOR

NO

NO

NO

NO

NO
OPTIMAL
YES

NO

YES

YES

80

YES

NO

TSOINV (ICEAM4) VALUE

MSG
SEE BELOW
[o}

6}

YES

NO

YES

YES
CcoB2
UCA600
NO

128

MAX
(SYSDA, 4)
10

YES

256
NONE
VLBLKSET
RC16
YES
STRONG
MAX

[o}

* 50%
10%

NO
IEBGENR
RCO

RCO
OPTIMAL
NONE

NO

YES
35651584
YES

YES
NONE
1048576
450560
MAX

YES
NONE
SYsouT
ALL
QUIT
RCO

RCO
2097152
YES

YES
16384
RCO

RCO
DFSPARM
4096
YES

o]

INPUT
NO

MAX

NO

YES
PRIVATE
RC16
109

YES

NO
6291456
RCO
STOR

NO

NO

NO

NO

NO
OPTIMAL
YES

NO

YES

YES

80

YES

NO

20

Summary

In summary, IBM Z Sort can provide benefits with reduced elapsed time and reduced
CPU time for eligible DFSORT sorts. Configuring the environment to 1) provide the
virtual storage for jobs/steps, 2) allow DFSORT to exploit processor storage and memory
objects and 3) provide ample processor storage to allow DFSORT to exploit it, are all
important requirements to successfully exploit IBM Z Sort.

If you were an early of ZBNA Z Sort application, you may want to rerun the tool to
identify other potential candidates.

© 2021 IBM Corporation 21

Special Notices

This publication is intended to discuss the behavior observed within a uniquely defined system environment in effort to understand the
system behavior when utilizing DFSORT, z/OS and z15 IBM Z Sort within a uniquely defined test system. The information in this
publication is not intended as the specification of any programing interfaces provided by DFSORT or z/OS. See the publication
section of the IBM programming announcement for the appropriate DFSORT, z/OS and z15 releases for more information about
which publications are considered to be product documentation. Where possible it is recommended to follow-up with product related
publications to understand the specific impact of the information documented in this publication.

The information contained in this document has not been submitted to any formal IBM test and is distributed on an “as is” basis
without any warranty either expressed or implied. The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational
environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee the same or
similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their
own risk.

Performance data contained in this document was determined in a controlled environment; therefore, the results which may be

obtained in other operating environments may vary significantly. No commitment as to your ability to obtain comparable results is any
intended or made by this release of information.

© 2021 IBM Corporation 22

Appendix

Here are additional resources:

DFSORT User Guide for IBM Integrated Accelerator for IBM Z Sort
(PHO03207)

https://www.ibm.com/support/pages/node/6335819

This is an excellent White Paper that describes Z Sort. It documents the important
enhancement of DFSORT and DFSORT's ICETOOL which are provided by z/OS
DFSORT V2R3 PTF UI90067 and DFSORT V2R4 PTF UI90068. This enhancement
exploits a new sort accelerator chip known as the IBM Integrated Accelerator for Z Sort.

Also for DFSORT information visit for ICETOOL papers, examples and more

http://www.ibm.com/storage/dfsort

© 2021 IBM Corporation 23

https://www.ibm.com/support/pages/node/6335819
http://www.ibm.com/storage/dfsort

	IBM Z Sort and DFSORT Considerations
	Objective and Summary
	DFSORT Background
	What is the IBM Z Sort and What are the DFSORT Characteristics Required to Exploit it?
	What resource related inhibitors exist to utilizing the IBM Z Sort?
	zBNA and how can it identify IBM Z Sort Candidates
	WSC DFSORT IBM Z Sort Test Jobs
	zBNA Results for WSC DFSORT IBM Z Sort Test Jobs
	Metrics to Identify IBM Z Sort Candidates and Resources
	DFSORT Installation Options
	Summary
	Special Notices
	Appendix
	DFSORT User Guide for IBM Integrated Accelerator for IBM Z Sort (PH03207)

